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Abstract

I discuss some of the methods used to analyze geodesic pathways computed on the formalde-
hyde potential energy surface. Chief among them are the decomposition of the total path length
into different kinematic lengths and a novel method for the estimation of the path length from
first principles in a small molecule system.

Introduction
The formalism discussed last time points to a powerful technique for understanding the dynam-
ics of chemical systems. Our group has developed an algorithm for computing the geodesics
(or shortest paths) for arbitrary, smooth potential surfaces. But once we have them, how do we
extract information from them?

One of the first measures we used was ∆R/g: the ratio of the Euclidean distance to length
of the geodesic between points in configuration space. This metric is a quantitative predictor
of the diffusion constant [1]:

D

D0
= lim

∆R→∞
(∆R/g)2

Since that paper, new systems have called for new analyses. Here, I review the method of de-
composing the kinematic length into lengths relating to different momenta (and corresponding
to motions of various degrees of freedom).

1 Decomposing the Geodesic
Having computed some tens of thousands of geodesics, we would like to be able to analyze
them in aggregate. Given that the geodesics are characterized by a minimum kinematic length,
measuring the lengths of the paths is a natural place to start. The total kinematic length of a
path is found as follows:

`Total =

∫
dτ [2 · T (τ)]1/2 (1)

where T is the kinetic energy, τ is a progress variable on [0, 1] and the limits of integration are
over the entire path.
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As the kinetic energy is partitioned between many degrees of freedom, we can interrogate
kinematic lengths corresponding to a subset of them by constructing the appropriate kinetic
energy (e.g.: rotation or vibration) and integrating as before. In doing so we can probe the
contributions of different kinds of motion to the inherent dynamics.

With respect to integration, I perform all of the following integrals using a modified form
of trapezoidal rule with unequally spaced abscissas [2, eq. 25.4.1]. The expression is:∫ τn

τ0

dτf(τ) ≈
n−1∑
i=0

δτ if (τi) (2)

In all expressions for the kinematic length, δτ i will drop out; this is shown explicitly only in
the case of the total kinematic length, which follows.

1.1 Total Kinematic Length
Picking up from eq. 1, we insert T = 1

2 ẋ M ẋT and have:

`Total =

∫
dτ
[
ẋ M ẋT

]1/2
(3)

where ẋ = dx
dτ is the rate of change of the configuration space vector x and M is the diagonal

mass matrix:

M =



m1

m1

m1

m2

. . .
mN


(4)

Where mi is the mass of the ith particle in the N -particle system. A see table 1 for the masses
relevant to formaldehyde. Expressing our integral (eq. 3) as a sum (via eq. 2) yields:

`Total =
n−1∑
i=0

δτ i

[
ẋi M ẋT

i

]1/2
(5)

=
n−1∑
i=0

δτ i

[
δxi
δτ i

M
δxi
δτ i

T
]1/2

(6)

=

n−1∑
i=0

[
δx (i) M δx (i)T

]1/2
(7)

where δx (i) = x (i+1) − x (i).

1.2 Vibrational Kinematic Length
To find the component of the kinematic length resulting from vibration, we construct the vi-
brational kinetic energy for 2 particles, α and β:

TV ib =
1

2
µṙ 2 (8)
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Element Mass / me
*

H 1837.15
C 21874.66
O 29156.95

Table 1: Atomic masses
*: me is the rest mass of the electron.

Where r = rα−rβ is the separation between the centers and µ =
mα·mβ
mα+mβ

is the reduced mass.
In analogy with eq. 1, we insert eq. 8 into the expression for the length (eq. 1) and have:

`V ib =

∫
dτ
[
µṙ 2

]1/2 (9)

=
√
µ

∫
dτ ‖ṙ‖ (10)

The resulting sum is:

`V ib =
√
µ
n−1∑
i=0

∥∥∥δr (i)
∥∥∥ (11)

where δr (i) = r (i+1) − r (i).

1.3 Rotational Kinematic Length
We can perform a similar calculation for the rotational degrees of freedom. The rotational
kinetic energy for a pair of particles, α and β, is:

TRot =
1

2
Iω 2 (12)

=
1

2
µr2

(
dr̂

dτ

)2

(13)

where r = ‖r‖ is the inter-center separation, µ =
mα·mβ
mα+mβ

is the reduced mass, and r̂ = r
‖r‖ =

r
r is the unit orientation vector (therefore: ω 2 =

(
dr̂
dτ

)2
). Again, we insert the expression for

kinetic energy into eq. 1 and have:

`Rot =
√
µ

∫
dτ

[
r2

(
dr̂

dτ

)2
]1/2

(14)

Now we compute:

dr̂

dτ
=

d

dτ

[
r

‖r‖

]
(15)

=
ṙ

r
− r

r2

d

dτ
[‖r‖] (16)

=
ṙ

r
− r

r2

(
r · ṙ
r

)
(17)
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With some re-arrangement, we arrive at a more compact form:

dr̂

dτ
=

ṙ

r
− r̂

(
r̂ · ṙ

r

)
(18)

=
1

r
[ṙ− r̂ (r̂ · ṙ)] (19)

=
ṙ

r
· [1− r̂r̂] (20)

where 1 is the identity and we have used the dyadic identity x(x · y) = y · xx. See [3,
2014.05.22:148] for derivation.

With dr̂
dτ in hand, we can compute the argument to the square root in our integral:

r2

(
dr̂

dτ

)2

= r2

[
ṙ

r
· ( I − r̂r̂)

]
·
[
ṙ

r
· ( I − r̂r̂)

]T
(21)

= ṙ · ( I − r̂r̂) · ( I − r̂r̂)T · ṙT (22)

= ṙ · ( I − r̂r̂) · ṙT (23)

The tensor terms in the penultimate step can be reduced by simple distribution and the identity:
(x̂x̂)2 = x̂x̂, which holds for all unit vectors x̂. See [3, 2014.05.22:148] for derivation.

Algebra out of the way, we can write a final expression for the rotational kinematic length:

`Rot =
√
µ

∫
dτ
[
ṙ · ( I − r̂r̂) · ṙT

]1/2
(24)

which is then reduced to the sum:

`Rot =
√
µ

n−1∑
i=0

[
δr (i) ·

(
I − r̂ (i)r̂ (i)

)
· δr (i)T

]1/2
(25)

where δr (i) = r (i+1) − r (i) and r̂ (i) = r (i)/r(i).

2 Estimating the Length of the Geodesic
To verify our calculations it is desirable to make an analytic estimate of the sizes of the kine-
matic lengths involved. Here we use a very simple model to make such an estimate.

Total Kinematic Length: We conceive of our system as having only 2 components: a
mass ofmH2

= 2 ·mH located at rH2
and a mass ofmCO = mC +mO located at rCO. Further

we will content ourselves to deal only with the translational motions of these fragments and
therefore restrict ourselves to a line. Finally, we assume that all motion is barrier-free—that no
potential obstacles intervene, or that for a straight-line path, V (x) ≤ EL.

Are these reasonable simplifications? They are if the contribution to the kinematic length
from translation is much greater than from internal rotation or vibration of H2 and CO. In
particular, we consider only direct paths, which are relatively unhindered. Therefore I expect
these conditions to yield an estimate which is of the proper order of magnitude but at the lower
edge of the distribution, perhaps even a lower bound.
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The kinetic energy of our system is:

T =
1

2
mH2

ṙ 2
H2

+
1

2
mCOṙ

2
CO (26)

Recalling our expression for kinematic length (eq. 1), we need to find an expression for 2T :

2T = mH2
ṙ 2

H2
+mCOṙ

2
CO (27)

If we assume constant velocity during dissociation and a total time t, we can write:

2T = mH2

∣∣∣∣∆rH2

t

∣∣∣∣2 +mCO

∣∣∣∣∆rCO

t

∣∣∣∣2 (28)

where ∆rCO and ∆rH2
are the total distances traveled by CO and H2 respectively. Fixing our

total momentum to zero allows us to write:

0 = pH2
+ pCO (29)

which implies:

mCO
∆rCO

t
= −mH2

∆rH2

t
(30)

and therefore:
∆rCO = −∆rH2

mH2

mCO
(31)

Inserting this into our expression for T2 (eq. 28) yields:

2T = mH2

(
∆rH2

t

)2(
1 +

mH2

mCO

)
(32)

Now we only need an expression for ∆rH2
. We can find one in terms of ∆rH2−CO, the

change in the center of mass separation of H2 and CO.

∆rH2−CO =
(
rH2
− rCO

)
f
−
(
rH2
− rCO

)
i

(33)

= ∆rH2
−∆rCO (34)

= ∆rH2

(
1 +

mH2

mCO

)
(35)

where we have used eq. 31 to eliminate ∆rCO. Continuing with 2T we insert this expression
into eq. 32, which yields:

2T =

(
∆rH2−CO

t

)2 mH2(
1 +

mH2
mCO

) (36)

=

(
∆rH2−CO

t

)2

µH2−CO (37)

where µH2−CO is the reduced mass for H2 and CO, defined in the usual way. Now our expres-
sion for the total length is:

`Total =

∫ t

0
dτ

(∥∥∆rH2−CO

∥∥
t

)√
µH2−CO (38)

=
∥∥∆rH2−CO

∥∥√µH2−CO (39)
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Using the appropriate masses from table 1 gives us µH2−CO = 3427.5 me. We can es-
timate

∥∥∆rH2−CO

∥∥ to be of order 10 a0 because the MD trajectories were terminated when
the centers were separated by 12 a0. This gives us an estimate for the kinematic length of:
`Total ≈ 585 a0

√
me. This is at the very bottom of the distribution of total lengths for direct

paths. This makes sense because we ignored many of the motions involved; modulo our guess
for
∥∥∆rH2−CO

∥∥, the estimate should be a lower bound!

Vibrational Kinematic Length: A similar analysis can be preformed for vibrational de-
grees of freedom. Using the expression for TV ib from eq. 8 we have:

2T = µṙ 2 (40)

Again using the assumption of constant velocity yields:

ṙ =
∆r

t
(41)

The expression is readily integrated to give:

`V ib = ‖∆r ‖√µ (42)

In the specific case of H2 vibration, we have µ = 918.56 me. We posit ‖∆r ‖ is of
order 1 a0 and therefore estimate the vibrational length as `V ib ≈ 30 a0

√
me. This estimate

is also fairly close to the lower bound of the distribution, which tails off around 40 a0
√
me.

Combining this result with the one for total length allows us to estimate the vibrational fraction
to be: `V ib/`Total ≈ 30/585 = 0.05, which is also within the tail of the distribution.
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