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A DERIVATION AND DISCUSSION of Wang and Stratt’s path-integral
expression for the diffusion propagator, which suggests geodesics on energy
landscapes should be interesting objects.

Introduction

We wish to understand the following equation (2.1) from Wang and Stratt’s
second paper of 2007 1:

1 C. Wang and R. M. Stratt. Global perspec-
tives on the energy landscapes of liquids,
supercooled liquids, and glassy systems:
Geodesic pathways through the potential
energy landscape. The Journal of Chemical
Physics, 127(22):224504, 2007

G(R0 → R, t) =
∫ R,t

R0,0
D [R(τ)] exp

[
− 1

4D

∫ t

0

(
dR
dτ

)2
dτ

]
, (1)

which gives the Green’s function2 for a system under free diffusion (no 2 In our usage here, the Green’s function is
the propagator, specifying the probability of
transitioning from state R0 to R in time t.

forces) as a path integral. From this point, the authors argue that the dynam-
ics of chemical systems are well captured by the paths which are “shortest”.
This observation has motivated much of the group’s work since 2007.

This document contains two parts: a derivation of the above expression
and a note about how it implies shortest paths. In future weeks, we will
discuss the realization of these ideas within the context of a physical system.

Derivation

This section closely follows the first chapter of Weigel’s excellent introduction
to path integrals 3. In the absence of external forces4, diffusion is a process

3 F. W. Wiegel. Introduction to Path-integral
Methods in Physics and Polymer Science.
World Scientific Publishing Co Pte Ltd,
1986
4 Studying free diffusion allows us to treat
complicated systems from another perspec-
tive. We could solve the diffusion equation
in the presence of a complicated potential,
but this is neither easy nor transferable. Free
diffusion is much more straight-forward.
However, we still don’t get a free lunch: the
potential will impose stringent boundary
conditions in a yet unspecified manner.

characterized by the following dynamical relation:

d
dt

G(R, t) = D∇2G(R, t) , (2)

where G(R, t) is the probability of finding a system in configuration R at
time t and D is the diffusion constant, which governs the intrinsic rate of
diffusion.

With the initial condition G(R, t = 0) = δ(R − R0), one can find the
solution for a Cartesian system of α degrees of freedom to be:

G(R0 → R, t) = (4πDt)−α/2 exp

[
− (R− R0)

2

4Dt

]
, (3)

as can be verified by substitution.
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Suppose we are interested in a particular path5 between R0 and R. We 5 This may seem an odd question. Why are
we creating more work if we have solved
already the diffusion equation? The answer
lies in the formal expression to which we
arrive if we study the solution as a function
of paths.

could represent such a path by discretizing it over (N + 1) bits of time, each
of duration ε, such that: (N + 1)ε = t. For notational ease, we define,

ti = ε · i
Ri = R (ti) ,

giving the discrete time and system configuration along the path. We also
have tN+1 = t. This procedure is illustrated in figure 1.

Figure 1: Discretizing a Path. Note that
while this figure traces the time evolution
of a single spatial coordinate, paths of
arbitrary dimension are amenable to this
decomposition. Figure modified from
Weigel.

To compute the probability of tracing such a path, we rely on the inde-
pendence of the probabilities of taking each such step. The probability of the
path is then the probability of propagating from R0 to R1 in time ε multi-
plied by the probability of propagating from R1 to R2 in time ε and so on. By
inserting eq. 3 for each step, we have:

G(R0 → R, t; {R1, R2. . . . RN}) =
N

∏
i=0

G(Ri → Ri+1, ε)

=
[
(4πDε)−α/2

]N+1
exp

[
−

N

∑
i=0

(Ri+1 − Ri)
2

4Dε

]
, (4)

which gives the probability of diffusing from R0 to R in a time t via the N
ordered points {R1, R2. . . . RN}. We could recover our original expression
(eq. 3) by integrating6 eq. 4 over the domain of each Ri: 6 Recall the Gaussian integral:∫ +∞

−∞
dx e−ax2

=

√
π

aG(R0 → R, t) =
∫

dR1

∫
dR2 . . .

∫
dRNG(R0 → R, t; {R1, R2. . . . RN})

(5)
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Suppose we increased N until the path appeared smooth; in the continuous
limit, N → ∞ and ε → 0. Focusing for the moment on the exponential, we
can write7:

7 Using the definition of a derivative:

d f
dt

= lim
ε→0

f (t + ε)− f (t)
ε

.

And the approximation for an integral:

lim
N→∞

N

∑
i=0

f (a + i∆τ)∆τ ≈
∫ b

a
dτ f (τ) ,

where ∆τ = b−a
N

lim
ε→0

N→∞

exp

[
−

N

∑
i=0

(Ri+1 − Ri)
2

4Dε

]
= (6)

lim
ε→0

N→∞

exp

[
− 1

4D

N

∑
i=0

(
Ri+1 − Ri

ε

)2
ε

]
= (7)

exp

[
− 1

4D

∫ t

0

(
dR
dτ

)2
dτ

]
, (8)

where R(τ) is a continuous function on [0, t] specifying the path. Now we
can write:

G(R0 → R, t) =

lim
ε→0

N→∞

[
(4πDε)−α/2

]N+1 ∫
dR1

∫
dR2 . . .

∫
dRN exp

[
− 1

4D

∫ t

0

(
dR
dτ

)2
dτ

]
(9)

To express this more compactly, we define the following operator8: 8 Nota bene, this “operator” is really just
notational shorthand for the procedure we
followed to arrive here. Take care that any
subsequent manipulations respect with the
discretization—they must!

∫ R,t

R0,0
D [R(τ)] ≡ lim

ε→0
N→∞

(4πDε)−α(N+1)/2
∫

dR1

∫
dR2 . . .

∫
dRN , (10)

which explicitly specifies the boundary values: R0 at t = 0 and R at time t.
This is a path integral. With this notation in hand, we arrive at our original
equation:

G(R0 → R, t) =
∫ R,t

R0,0
D [R(τ)] exp

[
− 1

4D

∫ t

0

(
dR
dτ

)2
dτ

]
, (11)

which expresses the diffusion propagator as an integral over the space of all
possible paths connecting the boundary values.

From this leaping point, Wang and Stratt observe that when diffusion is
slow, D is small and therefore the paths that will dominate must minimize the
integral within the exponential9.

9 That is, the dominant paths will obey
the classical mechanical principle of least
action:

δS [R(τ)] = 0, S [R(τ)] =
∫

dτ (2T) .

From here it is a simple extension to systems
with unequal masses and/or non-Cartesian
bases.

Why Shortest?

In their paper, Wang and Stratt argue that eq. 11 implies that the trajectories
which contribute most to the path integral are those with the shortest length.
However, eq. 11 contains no expression for the length. The key observation is
the following: the extremization of any quantity of the form:

I =
∫

dτ f (τ) (12)

can also be effected by extremizing10: 10 Consider the chain rule with the varia-
tional derivative.
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I′ =
∫

dτH [ f (τ)] (13)

where H[x] is a strictly positive function with non-negative derivative, de-
fined on the range of f (τ). Thus, minimizing

∫ t

0
dτ

(
dR
dτ

)2
(14)

can be achieved by minimizing11 11 Take H[x] =
√

x.

∫ t

0
dτ

√(
dR
dτ

)2
. (15)

Bringing the differential into the root, eq. 15 reduces to∫ t

0

√
dR · dR =

∫ t

0
‖dR‖ , (16)

which is clearly the length of the path.

Conclusion

We have derived an expression which seems to imply the dynamics of slow
diffusion is dominated by the shortest (most efficient) paths though configura-
tion space. We have not yet specified the nature of the boundary conditions in
this space nor do we yet have any machinery to construct such paths. We will
take up these topics at our next meeting.
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