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WE PREVIOUSLY DISCUSSED how a path-integral formulation of the
diffusion equation suggests that geodesics on an energy landscape will be
the most important components of the dynamics on that surface. Today we
will derive the key equations of the algorithm the group uses to construct
geodesics.

Introduction

Last time we discussed in detail, the origin of the key equation from Wang
and Stratt’s 2007 paper on geodesics 1:

1 Chengju Wang and Richard M. Stratt.
Global perspectives on the energy land-
scapes of liquids, supercooled liquids, and
glassy systems: Geodesic pathways through
the potential energy landscape. The Journal
of Chemical Physics, 127(22):224504, 2007
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This is a path integral expression for free diffusion and we inferred that the
dominant paths when diffusion is slow (D is small) are those that minimize
the integral in the exponential—those that minimize the action.

We have not yet specified the nature of the boundary conditions in this
space nor do we yet have any machinery to construct such action-minimizing
paths.

To situate our thinking within the problem area, a broad-brushed overview
of geodesic analysis as typically practiced by the group follows

1. Construct endpoint pairs (some combination of molecular dynamics or
Monte Carlo methods)

2. Select a landscape energy (perhaps an ensemble average, perhaps some-
thing else)

3. Construct geodesics at that energy (subject of this talk)

4. Analyze their properties (many ways, often starting with their length)

5. Infer something interesting about the system under study

Today’s discussion sits at the middle of the process and brings us from the
‘why?’ to the ‘how?’ of one of the groups lenses for understanding the dy-
namics of chemical systems. We will treat the problem in a Cartesian coor-
dinate system of N particles with equal masses. References will be provided
along the way for deviations from this basic formulation.
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Boundary Conditions: The Landscape Ensemble

Figure 1: The potential energy landscape
ensemble takes the landscape energy, EL,
as its thermodynamic variable of control.
This fixed maximum potential energy
plays a similar role to the microcanonical
energy or the canonical temperature. In
the region depicted, the shaded mountains
are forbidden, while the other areas are
accessible. Figure from Wang and Stratt.

We constructed eq. 1 with the goal of understanding the inherent dynam-
ics2 or most efficient paths of systems under study. There are many ways

2 The inherent dynamics of a system can
be thought of as the system’s classical
dynamics stripped of noise (e.g. high
frequency vibrations or rotations) that
hamper identification of the essential steps
or motions of the system. They describe the
dominant thoroughfares of configuration
space—the major motions during a chemical
or physical transformation.

that we could formulate a notion of most efficient path, but an expedient one
comes from combining eq. 1 with the potential energy landscape ensemble3.

3 Chengju Wang and Richard M. Stratt.
Global perspectives on the energy land-
scapes of liquids, supercooled liquids, and
glassy systems: The potential energy land-
scape ensemble. The Journal of Chemical
Physics, 127(22):224503, 2007

The landscape ensemble is a statistical mechanical ensemble like the
canonical or microcanonical ensembles. However, instead of a fixed temper-
ature or energy, its thermodynamic variable of control is a fixed maximum
potential energy, called the landscape energy, EL. Within this ensemble, all
configurations such that the potential is less than the landscape energy,

V(R) ≤ EL

are admitted with equal probability4. In the thermodynamic limit, this ensem- 4 Equiprobability is a result of the same
entropy maximization arguments that lead
to a similar result in the microcanonical
ensemble.

ble gives the same configuration space probability densities that all other such
ensembles give.

The landscape ensemble partitions configuration space into allowed and
dis-allowed regions and provides boundary conditions for eq. 1—we must
minimize the action subject to the landscape energy:

S =
∫ t

0
dτ

(
dR
dτ

)2
s.t. V(R(τ)) ≤ EL (2)

This condition takes the form of a non-holonomic constraint5. Solutions to

5 A holonomic constraint is one that can
be expressed as an equality relationship
between a constant and a function of coordi-
nates and time, e.g. 0 = f (q1, q2, . . . , t).problems with non-holonomic are often difficult, but the form of solution

is specified by the Kuhn-Tucker theorem6. The theorem holds that the de- 6 H. W. Kuhn and A. W. Tucker. Nonlinear
programming. In Jerzy Neyman, editor, Pro-
ceedings of the Second Berkeley Symposium
on Mathematical Statistics and Probability,
pages 481–492, Berkeley, California, 1951.
University of California Press

sired solution will be the union of paths that unconditionally minimize the
functional in eq. 2 and those where strict equality
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Unconditional minimization

In this section, we follow Goldstein 7 to find the form of the (shortest) paths,

7 Herbert Goldstein. Classical Mechanics.
Addison-Wesley series in physics. Addison-
Wesley Publishing Company, Reading, MA,
USA, 1980

which unconditionally minimize the action. Again, we will work in Cartesian
coordinates for an otherwise unconstrained system. See Jacobson and Stratt 8 8 Daniel Jacobson and Richard M. Stratt.

The inherent dynamics of a molecular
liquid: Geodesic pathways through the
potential energy landscape of a liquid of
linear molecules. The Journal of Chemical
Physics, 140(17):174503, 2014

for work dealing with free rotations and Frechette and Stratt 9 for a case

9 Layne Frechette and Richard M. Stratt.
The inherent dynamics of isotropic- and
nematic-phase liquid crystals. The Journal
of Chemical Physics, 144(23):234505, 2016

where a constraint is applied to the free steps.
Using calculus to find the extrema of a function, for instance h(x), is

a familiar operation. By equating the derivative of h(x) with 0, we locate
values of x for which h(x) is unchanging or stationary; these locations often
correspond to local extrema of the function. The problem treated by the
calculus of variations is analogous. We seek to extremize an object that takes
a function (in our case, a path) as its argument. That is, we find some path
such that the object is stationary with respect to variations in that function.

From eq. 2, we seek to minimize an integral over kinetic energy, which
in general is a function of coordinates and their derivatives. Working in one
dimension10, we seek to find the path R(τ) that extremizes: 10 This procedure extends to systems with an

arbitrary number of degrees of freedom

J =
∫ t

0
dτ f

(
R, Ṙ

)
(3)

That is, we seek R(τ) such that J is unchanged for infinitesimal variations
in R. We can represent the paths neighboring the correct (extremal) path,
R(τ) by adding an arbitrary function, η(τ) in proportion to a small variable
parameter, α:

R(τ, α) = R(τ) + αη(τ) (4)

As we are interested in R such that it connects R(0) to R(t), we require that:

η(0) = η(t) = 0 (5)

J in eq. 3 is now a function of α as well:

J(α) =
∫ t

0
dτ f

(
R(τ, α), Ṙ(τ, α)

)
(6)

We can encode the requirement for stationary J in the following familiar
form11: 11 We require that the derivative be evaluated

at α = 0 because this corresponds to the
unperturbed path we seek.0 =

dJ
dα

∣∣∣∣
α=0

(7)

We can bring the α derivative inside the integral in eq. 6 and applying the
chain rule, we have:

dJ
dα

=
∫ t

0
dτ

(
∂ f
∂R

∂R
∂α

+
∂ f
∂Ṙ

∂Ṙ
∂α

)
From eq. 4, we have that ∂R

∂α = η and ∂Ṙ
∂α = η̇, the arbitrary function of τ and

its time derivative. This leaves:

dJ
dα

=
∫ t

0
dτ

(
∂ f
∂R

η +
∂ f
∂Ṙ

η̇

)
(8)
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Consider the second term in the integral:∫ t

0
dτ

∂ f
∂Ṙ

η̇

This expression is susceptible by integration by parts 12 Re-arranging leaves

12 Recall the general form,∫ b

a
udv = uv|ba −

∫ b

a
vdu

And identify:

u =
∂ f
∂Ṙ

dv = η̇dτ

du =
d

dτ

(
∂ f
∂Ṙ

)
dτ

v = η

us with: ∫ t

0
dτ

∂ f
∂Ṙ

η̇ =
∂ f
∂Ṙ

η

∣∣∣∣t
0
−
∫ t

0
dτ

d
dτ

(
∂ f
∂Ṙ

)
η

Because of the bounds on η, η(0) = η(t) = 0, the surface terms vanish!
Inserting back into eq. 8 and factoring out η gives:

dJ
dα

∣∣∣∣
α=0

=
∫ t

0
dτ

[
∂ f
∂R
− d

dτ

(
∂ f
∂Ṙ

)]
η = 0 (9)

where evaluating the derivative at α = 0 gives R and Ṙ as functions of τ

alone. Since η is an arbitrary function, the integral is stationary only if

∂ f
∂R
− d

dτ

∂ f
∂Ṙ

= 0 (10)

which gives the conditions on R to minimize J13.

13 Notice that inserting the Lagrangian
for f gives S = J, the action, and yields
Lagrange’s equations of motion.

Minimizing The Force-Free Action

From eq. 2, we have f =
(

dR
dτ

)2
in eq. 10. Proceeding, we find that the path

which minimizes eq. 2 is specified by the differential equation:

R̈ = 0 (11)

which, when integrated and solved for its boundary values, yields the equa-
tion for a straight line (and the geodesic!):

R(τ) = R(0)
(

1− τ

t

)
+ R(t)

(τ

t

)
(12)

this amounts to linearly interpolating between R(0) and R(t) in time t
for each of the 3N coordinates. To actually compute such paths we dis-
cretize14eq. 12 as follows: 14 Consider R(τ + ∆)− R(τ).

R(t+1) = R(t) + δR
R− R(t)∣∣R− R(t)

∣∣ (13)

Where δR is a small15 step-size.

15 Small here is relative to features of the
landscape. In practice, δR should be as
large as it can be such that the lengths of
computed geodesics are still converged to a
maximum.

Strict Equality: Paths along boundaries

So far we have successfully dealt with the first part of the solution suggested
by the Kuhn-Tucker theorem, namely the unconditional minimization of the
action integral. However, unless we are extraordinarily lucky, the straight-line
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motion implied by eq. 13 will surely send the system into a region violating
the landscape criterion, V(r) > EL. Once this happens, we need a way to
proceed.

See Ma and Stratt 16 for an entirely different approach for tracing the

16 Qingqing Ma and Richard M. Stratt.
Potential energy landscape and inherent
dynamics of a hard-sphere fluid. Phys. Rev.
E, 90:042314, Oct 2014

boundaries in a hard sphere system. See Cofer-Shabica and Stratt 17 for a

17 D. Vale Cofer-Shabica and Richard M.
Stratt. What is special about how roaming
chemical reactions traverse their poten-
tial surfaces? differences in geodesic
paths between roaming and non-roaming
events. The Journal of Chemical Physics,
146(21):214303, 2017

method to construct escape steps that preserve the center of mass for systems
with hetero-atoms

A Newton-Raphson root search

The Kuhn-Tucker theorem suggests that we must closely trace the boundaries
of the obstacles specified by V(R(τ)) ≤ EL. We aim, therefore to take the
most efficient path out of the obstacle once eq. 13 causes us to stumble into it.
That is, we seek the nearest solution to V(R(τ)) = EL. A classic strategy for
solving this problem is a Newton-Raphson root search.

The key insight behind Newton-Raphson is that the gradient points in
the direction of most rapid change in the function. We can exploit this by
following the gradient to the solution we seek. Here, we expand the potential
to first order and then demand that this approximation yield the landscape
energy:

V(R) ≈ V(R0) + ∇V|R0
· (R− R0) = EL (14)

where R0 was the first offending step in eq. 13. There are no bounds on the
number of possible solutions to this equation, but we make the guess that
heading downhill via the steepest path will be optimal18. This suggests a 18 In a system with hetero-atoms we could

accomplish the same goal without perturb-
ing the center of mass by following the
inverse-mass-weighted gradient. You can
convince yourself of this by considering
the direction the a dynamical system moves
under the action of a force from rest.

solution of the form:

(R− R0) = C ∇V|R0
≡ ∆R (15)

Rearranging for the step-length, C, immediately yields:

C =
EL −V(R0)∣∣∣∇V|R0

∣∣∣2
Which we insert back into eq. 15 to find:

(R− R0) = −
V (R0)− EL∣∣∣∇V|R0

∣∣∣2 ∇V|R0
(16)

Applying eq. 16 iteratively leads to the relation:

Rn+1 = Rn −
V (Rn)− EL∣∣∣∇V|Rn

∣∣∣2 ∇V|Rn
(17)

where R0 is the first R(t) with V
(

R(t)
)
> EL from eq. 13. This procedure

is applied repeatedly until V(Rn) < EL. And then free steps (eq. 13) are
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resumed with Rt+1 = Rn. Carried out in conjunction with eq. 13, the
system will repeatedly stray into the forbidden region and then escape via the
expression we just derived. This will cause the path to wind around and hug
the bounds of obstacles exactly as required by the Kuhn-Tucker theorem.

Optimizing Paths

Together, eq. 13 for free steps and eq. 17 for escape steps, provide the ma-
chinery to compute paths satisfying the Kuhn-Tucker theorem on arbitrary
potentials. However, while the theorem imposes a necessary condition, it
is not sufficient on its own—it provides no guarantee that the path will be
shortest19. 19 It is worth noting that the free-step portion

of our algorithm gives the correct answer in
the limit of low-obstacle density.

The algorithm described above will generate a path, R0 → R. A first step
in refinement is to check the reverse path and see if it is shorter, R → R0; if
so this new path is retained. Then a point along the path is randomly selected,
Ri and displaced using small single-atom moves to a new point R′i. The same
algorithm is used to compute geodesics, R0 → R′i and R′i → R. If the length
of this new, combined-path is shorter than the original, we keep the new
path otherwise we discard it. This process is repeated until the path-lengths
are converged20. One of the methods of this manner of shortening, is that 20 Typical length-reductions are of the order

of 5%.it uses the algorithm we already have and so the optimized paths retain any
properties of paths produced by the first algorithm, for instance obeying the
Kuhn-Tucker theorem.

Conclusion

We have derived the key equations of the algorithm for computing geodesics
on a potential energy surface specified in Cartesian coordinates. Free steps
are given by eq. 13 and when the system encounters an obstacle, eq. 17 will
lead it out. An optimization process further refines the paths until they are
converged in length.
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